Search results
Results from the WOW.Com Content Network
Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [2] and transforming it into one cohesive data set; a simple example is the expansion of abbreviations ("st, rd, etc." to "street, road, etcetera").
Database normalization is the process of structuring a relational database in accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity. It was first proposed by British computer scientist Edgar F. Codd as part of his relational model .
A hypothetical example of a failure to meet third normal form would be a hospital database having a table of patients which included a column for the telephone number of their doctor. (The phone number is dependent on the doctor, rather than the patient, thus would be better stored in a table of doctors.)
In the simplest cases, normalization of ratings means adjusting values measured on different scales to a notionally common scale, often prior to averaging. In more complicated cases, normalization may refer to more sophisticated adjustments where the intention is to bring the entire probability distributions of adjusted values into alignment.
Canonicalization of filenames is important for computer security. For example, a web server may have a restriction that only files under the cgi directory C:\inetpub\wwwroot\cgi-bin may be executed. This rule is enforced by checking that the path starts with C:\inetpub\wwwroot\cgi-bin\ and only then executing it.
Denormalization is a strategy used on a previously-normalized database to increase performance. In computing, denormalization is the process of trying to improve the read performance of a database, at the expense of losing some write performance, by adding redundant copies of data or by grouping data.
Fifth normal form (5NF), also known as projection–join normal form (PJ/NF), is a level of database normalization designed to remove redundancy in relational databases recording multi-valued facts by isolating semantically related multiple relationships.
Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...