Search results
Results from the WOW.Com Content Network
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
In a 1977 review of permutation-generating algorithms, Robert Sedgewick concluded that it was at that time the most effective algorithm for generating permutations by computer. [2] The sequence of permutations of n objects generated by Heap's algorithm is the beginning of the sequence of permutations of n+1 objects.
An additional problem occurs when the Fisher–Yates shuffle is used with a pseudorandom number generator or PRNG: as the sequence of numbers output by such a generator is entirely determined by its internal state at the start of a sequence, a shuffle driven by such a generator cannot possibly produce more distinct permutations than the ...
A minimum spanning tree of a weighted planar graph.Finding a minimum spanning tree is a common problem involving combinatorial optimization. Combinatorial optimization is a subfield of mathematical optimization that consists of finding an optimal object from a finite set of objects, [1] where the set of feasible solutions is discrete or can be reduced to a discrete set.
(n factorial) is the number of n-permutations; !n (n subfactorial) is the number of derangements – n-permutations where all of the n elements change their initial places. In combinatorial mathematics , a derangement is a permutation of the elements of a set in which no element appears in its original position.
One variation of this problem assumes that the people making change will use the "greedy algorithm" for making change, even when that requires more than the minimum number of coins. Most current currencies use a 1-2-5 series , but some other set of denominations would require fewer denominations of coins or a smaller average number of coins to ...
This is an optimal stop problem, a classic in decision theory, statistics and applied probabilities, where a random permutation is gradually revealed through the first elements of its Lehmer code, and where the goal is to stop exactly at the element k such as σ(k)=n, whereas the only available information (the k first values of the Lehmer code ...
In computer science and mathematics, the Josephus problem (or Josephus permutation) is a theoretical problem related to a certain counting-out game. Such games are used to pick out a person from a group, e.g. eeny, meeny, miny, moe. A drawing for the Josephus problem sequence for 500 people and skipping value of 6.