Search results
Results from the WOW.Com Content Network
Symmetric-key cryptography, where a single key is used for both encryption and decryption. Symmetric-key cryptography refers to encryption methods in which both the sender and receiver share the same key (or, less commonly, in which their keys are different, but related in an easily computable way).
In cryptography, forward secrecy (FS), also known as perfect forward secrecy (PFS), is a feature of specific key-agreement protocols that gives assurances that session keys will not be compromised even if long-term secrets used in the session key exchange are compromised, limiting damage.
It has an entity authentication mechanism, based on the X.509 system; a key setup phase, where a symmetric encryption key is formed by employing public-key cryptography; and an application-level data transport function. These three aspects have important interconnections.
The key is introduced in each round, usually in the form of "round keys" derived from it. (In some designs, the S-boxes themselves depend on the key.) Decryption is done by simply reversing the process (using the inverses of the S-boxes and P-boxes and applying the round keys in reversed order).
The following outline is provided as an overview of and topical guide to cryptography: Cryptography (or cryptology) – practice and study of hiding information. Modern cryptography intersects the disciplines of mathematics, computer science, and engineering. Applications of cryptography include ATM cards, computer passwords, and electronic ...
Example of a Key Derivation Function chain as used in the Signal Protocol.The output of one KDF function is the input to the next KDF function in the chain. In cryptography, a key derivation function (KDF) is a cryptographic algorithm that derives one or more secret keys from a secret value such as a master key, a password, or a passphrase using a pseudorandom function (which typically uses a ...
This concept is widely embraced by cryptographers, in contrast to security through obscurity, which is not. Kerckhoffs's principle was phrased by American mathematician Claude Shannon as "the enemy knows the system", [ 1 ] i.e., "one ought to design systems under the assumption that the enemy will immediately gain full familiarity with them".
Symmetric key cryptography—compute a ciphertext decodable with the same key used to encode (e.g., AES) Public-key cryptography—compute a ciphertext decodable with a different key used to encode (e.g., RSA) Digital signatures—confirm the author of a message; Mix network—pool communications from many users to anonymize what came from whom