enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reflection phase change - Wikipedia

    en.wikipedia.org/wiki/Reflection_phase_change

    A wave on a string experiences a 180° phase change when it reflects from a point where the string is fixed. [2] [3] Reflections from the free end of a string exhibit no phase change. The phase change when reflecting from a fixed point contributes to the formation of standing waves on strings, which produce the sound from stringed instruments.

  3. Physics of optical holography - Wikipedia

    en.wikipedia.org/wiki/Physics_of_Optical_Holography

    A reflection-type volume hologram can give an acceptably clear reconstructed image using a white light source, as the hologram structure itself effectively filters out light of wavelengths outside a relatively narrow range. In theory, the result should be an image of approximately the same colour as the laser light used to make the hologram.

  4. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    The phase shift of the reflected wave on total internal reflection can similarly be obtained from the phase angles of r p and r s (whose magnitudes are unity in this case). These phase shifts are different for s and p waves, which is the well-known principle by which total internal reflection is used to effect polarization transformations .

  5. Distributed Bragg reflector - Wikipedia

    en.wikipedia.org/wiki/Distributed_Bragg_reflector

    Time-resolved simulation of a pulse reflecting from a Bragg mirror. A distributed Bragg reflector (DBR) is a reflector used in waveguides, such as optical fibers.It is a structure formed from multiple layers of alternating materials with different refractive index, or by periodic variation of some characteristic (such as height) of a dielectric waveguide, resulting in periodic variation in the ...

  6. Stokes relations - Wikipedia

    en.wikipedia.org/wiki/Stokes_relations

    In the third picture, this is shown by the coefficients r' and t' (for reflection and transmission of the reversed fields). Everything must interfere so that the second and third pictures agree; beam x has amplitude E and beam y has amplitude 0, providing Stokes relations. The most interesting result here is that r=-r’. Thus, whatever phase ...

  7. Thin-film interference - Wikipedia

    en.wikipedia.org/wiki/Thin-film_interference

    Constructive phase interaction Destructive phase interaction. The figures show two incident light beams (A and B). Each beam produces a reflected beam (dashed). The reflections of interest are beam A’s reflection off of the lower surface and beam B’s reflection off of the upper surface. These reflected beams combine to produce a resultant ...

  8. Reflection (physics) - Wikipedia

    en.wikipedia.org/wiki/Reflection_(physics)

    Reflection of light is either specular (mirror-like) or diffuse (retaining the energy, but losing the image) depending on the nature of the interface.In specular reflection the phase of the reflected waves depends on the choice of the origin of coordinates, but the relative phase between s and p (TE and TM) polarizations is fixed by the properties of the media and of the interface between them.

  9. Specular reflection - Wikipedia

    en.wikipedia.org/wiki/Specular_reflection

    Specular reflection, or regular reflection, is the mirror-like reflection of waves, such as light, from a surface. [ 1 ] The law of reflection states that a reflected ray of light emerges from the reflecting surface at the same angle to the surface normal as the incident ray, but on the opposing side of the surface normal in the plane formed by ...