enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Clustering high-dimensional data - Wikipedia

    en.wikipedia.org/wiki/Clustering_high...

    Clustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions.Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions ...

  3. Multidimensional scaling - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_scaling

    Here, a subjective judgment about the correspondence can be made (see perceptual mapping). Test the results for reliability and validity – Compute R-squared to determine what proportion of variance of the scaled data can be accounted for by the MDS procedure. An R-square of 0.6 is considered the minimum acceptable level.

  4. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Normalized mutual information is a family of corrected-for-chance variants of this that has a reduced bias for varying cluster numbers. [35] Confusion matrix; A confusion matrix can be used to quickly visualize the results of a classification (or clustering) algorithm. It shows how different a cluster is from the gold standard cluster.

  5. HCS clustering algorithm - Wikipedia

    en.wikipedia.org/wiki/HCS_clustering_algorithm

    If G has a vertex x with degree <= n/2, then G has a minimum cut (that isolates x) with edges <= n/2, so G is not highly connected. So if G is highly connected, every vertex has degree >= n/2. There is a famous theorem in graph theory that says that if every vertex has degree >= n/2, then the diameter of G (the longest path between any two ...

  6. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    Self-organizing maps, like most artificial neural networks, operate in two modes: training and mapping. First, training uses an input data set (the "input space") to generate a lower-dimensional representation of the input data (the "map space").

  7. t-distributed stochastic neighbor embedding - Wikipedia

    en.wikipedia.org/wiki/T-distributed_stochastic...

    t-distributed stochastic neighbor embedding (t-SNE) is a statistical method for visualizing high-dimensional data by giving each datapoint a location in a two or three-dimensional map. It is based on Stochastic Neighbor Embedding originally developed by Geoffrey Hinton and Sam Roweis, [ 1 ] where Laurens van der Maaten and Hinton proposed the t ...

  8. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    Explained Variance. The "elbow" is indicated by the red circle. The number of clusters chosen should therefore be 4. The elbow method looks at the percentage of explained variance as a function of the number of clusters: One should choose a number of clusters so that adding another cluster does not give much better modeling of the data. More ...

  9. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    The most used such package is mclust, [35] [36] which is used to cluster continuous data and has been downloaded over 8 million times. [37] The poLCA package [38] clusters categorical data using the latent class model. The clustMD package [25] clusters mixed data, including continuous, binary, ordinal and nominal variables.

  1. Related searches how to visualize multidimensional clusters in python 4 0 10 mber 4 0 105 has significant figures

    clustering dimensional datasubspace clustering