enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Alpha particle - Wikipedia

    en.wikipedia.org/wiki/Alpha_particle

    Secondly, he found the charge-to-mass ratio of alpha particles to be half that of the hydrogen ion. Rutherford proposed three explanations: 1) an alpha particle is a hydrogen molecule (H 2) with a charge of 1 e; 2) an alpha particle is an atom of helium with a charge of 2 e; 3) an alpha particle is half a helium atom with a charge of 1 e.

  3. Radiation - Wikipedia

    en.wikipedia.org/wiki/Radiation

    It is more penetrating than alpha radiation but less than gamma. Beta radiation from radioactive decay can be stopped with a few centimetres of plastic or a few millimetres of metal. It occurs when a neutron decays into a proton in a nucleus, releasing the beta particle and an antineutrino.

  4. Radioanalytical chemistry - Wikipedia

    en.wikipedia.org/wiki/Radioanalytical_chemistry

    The importance of radioanalytical chemistry spans many fields including chemistry, physics, medicine, pharmacology, biology, ecology, hydrology, geology, forensics, atmospheric sciences, health protection, archeology, and engineering. Applications include: forming and characterizing new elements, determining the age of materials, and creating ...

  5. Beta particle - Wikipedia

    en.wikipedia.org/wiki/Beta_particle

    A beta particle, also called beta ray or beta radiation (symbol β), is a high-energy, high-speed electron or positron emitted by the radioactive decay of an atomic nucleus, known as beta decay. There are two forms of beta decay, β − decay and β + decay, which produce electrons and positrons, respectively.

  6. Ionizing radiation - Wikipedia

    en.wikipedia.org/wiki/Ionizing_radiation

    The penetrating power of x-ray, gamma, beta, and positron radiation is used for medical imaging, nondestructive testing, and a variety of industrial gauges. Radioactive tracers are used in medical and industrial applications, as well as biological and radiation chemistry. Alpha radiation is used in static eliminators and smoke detectors.

  7. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    The rays were given the names alpha, beta, and gamma, in increasing order of their ability to penetrate matter. Alpha decay is observed only in heavier elements of atomic number 52 and greater, with the exception of beryllium-8 (which decays to two alpha particles). The other two types of decay are observed in all the elements.

  8. Gamma ray - Wikipedia

    en.wikipedia.org/wiki/Gamma_ray

    The "rays" emitted by radioactive elements were named in order of their power to penetrate various materials, using the first three letters of the Greek alphabet: alpha rays as the least penetrating, followed by beta rays, followed by gamma rays as the most penetrating.

  9. Radiochemistry - Wikipedia

    en.wikipedia.org/wiki/Radiochemistry

    β (beta) radiation—the transmutation of a neutron into an electron and a proton. After this happens, the electron is emitted from the nucleus into the electron cloud. 3. γ (gamma) radiation—the emission of electromagnetic energy (such as gamma rays) from the nucleus of an atom. This usually occurs during alpha or beta radioactive decay.