Search results
Results from the WOW.Com Content Network
Newton's theorem of revolving orbits was his first attempt to understand apsidal precession quantitatively. According to this theorem, the addition of a particular type of central force—the inverse-cube force—can produce a rotating orbit; the angular speed is multiplied by a factor k , whereas the radial motion is left unchanged.
Newton derived an early theorem which attempted to explain apsidal precession. This theorem is historically notable, but it was never widely used and it proposed forces which have been found not to exist, making the theorem invalid. This theorem of revolving orbits remained largely unknown and undeveloped for over three centuries until 1995. [14]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Download as PDF; Printable version; In other projects Wikidata item; ... Newton's theorem of revolving orbits; Newton's shell theorem This page was last edited on ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The inverse-cube force is chosen to change the 2nd (blue), 3rd (green) and 6th (red) harmonics of the base ellipse (shown in black). The eccentricity is 0.8, as in Newton revolving orbits 1 inv2 inv3.png and Newton revolving orbits 1 0.95.png.
English: Schematic illustrating Newton's theorem of revolving orbits. Meant to be coupled with Image:Newton revolving orbit 3rd subharmonic e0.6 240frames smaller.gif. The smaller angle θ here is 20 degrees, whereas the larger angle kθ equals 60 degrees; hence, k equals 3.