Search results
Results from the WOW.Com Content Network
The quadratic variation exists for all continuous finite variation processes, and is zero. This statement can be generalized to non-continuous processes. Any càdlàg finite variation process X {\displaystyle X} has quadratic variation equal to the sum of the squares of the jumps of X {\displaystyle X} .
First, the Doob–Meyer decomposition theorem is used to show that a decomposition M 2 = N + M exists, where N is a martingale and M is a right-continuous, increasing and predictable process starting at zero. This uniquely defines M , which is referred to as the predictable quadratic variation of M.
A single realization of a one-dimensional Wiener process A single realization of a three-dimensional Wiener process. In mathematics, the Wiener process (or Brownian motion, due to its historical connection with the physical process of the same name) is a real-valued continuous-time stochastic process discovered by Norbert Wiener.
In probability theory, the martingale representation theorem states that a random variable that is measurable with respect to the filtration generated by a Brownian motion can be written in terms of an Itô integral with respect to this Brownian motion.
A sample path of an Itō process together with its surface of local times. In the mathematical theory of stochastic processes, local time is a stochastic process associated with semimartingale processes such as Brownian motion, that characterizes the amount of time a particle has spent at a given level.
A convex function of a martingale is a submartingale, by Jensen's inequality. For example, the square of the gambler's fortune in the fair coin game is a submartingale (which also follows from the fact that X n 2 − n is a martingale). Similarly, a concave function of a martingale is a supermartingale.
Stochastic exponential of a local martingale is again a local martingale. All the formulae and properties above apply also to stochastic exponential of a complex -valued X {\displaystyle X} . This has application in the theory of conformal martingales and in the calculation of characteristic functions.
In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be ...