Search results
Results from the WOW.Com Content Network
Fleming's left-hand rule. Fleming's left-hand rule for electric motors is one of a pair of visual mnemonics, the other being Fleming's right-hand rule for generators. [1] [2] [3] They were originated by John Ambrose Fleming, in the late 19th century, as a simple way of working out the direction of motion in an electric motor, or the direction of electric current in an electric generator.
The idea of the catapult effect is central in our day-to-day lives as it greatly contributes to our understanding of the electric motor (which we use in numerous appliances from washing machines to vacuum cleaners and cars). The catapult effect helps to explain the movement of the motor itself and is thus used widely in science.
An electrostatic motor or capacitor motor is a type of electric motor based on the attraction and repulsion of electric charge. An alternative type of electrostatic motor is the spacecraft electrostatic ion drive thruster where forces and motion are created by electrostatically accelerating ions.
Like most electro-mechanical machines, a homopolar motor is reversible: if the conductor is turned mechanically, then it will operate as a homopolar generator, producing a direct current voltage between the two terminals of the conductor. The direct current produced is an effect of the homopolar nature of the design.
One example of these still used today is the alternator, which was created to power military equipment in the 1950s and later repurposed for automobiles in the 1960s. Post-war America greatly benefited from the military's development of electromechanics as household work was quickly replaced by electromechanical systems such as microwaves ...
In vector control, an AC induction or synchronous motor is controlled under all operating conditions like a separately excited DC motor. [21] That is, the AC motor behaves like a DC motor in which the field flux linkage and armature flux linkage created by the respective field and armature (or torque component) currents are orthogonally aligned such that, when torque is controlled, the field ...
For example, an unloaded motor of = 5,700 rpm/V supplied with 11.1 V will run at a nominal speed of 63,270 rpm (= 5,700 rpm/V × 11.1 V). The motor may not reach this theoretical speed because there are non-linear mechanical losses.
Motor adaptation, a form of motor learning, is the process of acquiring and restoring locomotor patterns (e.g. leg coordination patterns) through an error-driven learning process. This type of adaptation is context-dependent and hence, is specific to the environment in which the adaptation occurred.