Search results
Results from the WOW.Com Content Network
In vector calculus, the curl, also known as rotor, is a vector operator that describes the infinitesimal circulation of a vector field in three-dimensional Euclidean space. The curl at a point in the field is represented by a vector whose length and direction denote the magnitude and axis of the maximum circulation. [1]
There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
D: divergence, C: curl, G: gradient, L: Laplacian, CC: curl of curl. Each arrow is labeled with the result of an identity, specifically, the result of applying the operator at the arrow's tail to the operator at its head. The blue circle in the middle means curl of curl exists, whereas the other two red circles (dashed) mean that DD and GG do ...
The gradient of a function is obtained by raising the index of the differential , whose components are given by: =; =; =, = = The divergence of a vector field with components is
The divergence of the curl of any vector field (in three dimensions) is equal to zero: ∇ ⋅ ( ∇ × F ) = 0. {\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0.} If a vector field F with zero divergence is defined on a ball in R 3 , then there exists some vector field G on the ball with F = curl G .
In R 3, the gradient, curl, and divergence are special cases of the exterior derivative. An intuitive interpretation of the gradient is that it points "up": in other words, it points in the direction of fastest increase of the function. It can be used to calculate directional derivatives of scalar functions or normal directions. Divergence ...
Del is a very convenient mathematical notation for those three operations (gradient, divergence, and curl) that makes many equations easier to write and remember. The del symbol (or nabla) can be formally defined as a vector operator whose components are the corresponding partial derivative operators.
Any of the operations of vector calculus including gradient, divergence, and curl. Multivariable calculus can be applied to analyze deterministic systems that have multiple degrees of freedom . Functions with independent variables corresponding to each of the degrees of freedom are often used to model these systems, and multivariable calculus ...