enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Topological sorting - Wikipedia

    en.wikipedia.org/wiki/Topological_sorting

    The canonical application of topological sorting is in scheduling a sequence of jobs or tasks based on their dependencies.The jobs are represented by vertices, and there is an edge from x to y if job x must be completed before job y can be started (for example, when washing clothes, the washing machine must finish before we put the clothes in the dryer).

  3. Order topology - Wikipedia

    en.wikipedia.org/wiki/Order_topology

    Though the subspace topology of Y = {−1} ∪ {1/n } n∈N in the section above is shown not to be generated by the induced order on Y, it is nonetheless an order topology on Y; indeed, in the subspace topology every point is isolated (i.e., singleton {y} is open in Y for every y in Y), so the subspace topology is the discrete topology on Y (the topology in which every subset of Y is open ...

  4. Order topology (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Order_topology_(functional...

    In mathematics, specifically in order theory and functional analysis, the order topology of an ordered vector space (,) is the finest locally convex topological vector space (TVS) topology on for which every order interval is bounded, where an order interval in is a set of the form [,]:= {:} where and belong to . [1]

  5. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation ≤ {\displaystyle \leq } on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :

  6. Comparison of topologies - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_topologies

    For definiteness the reader should think of a topology as the family of open sets of a topological space, since that is the standard meaning of the word "topology". Let τ 1 and τ 2 be two topologies on a set X such that τ 1 is contained in τ 2: . That is, every element of τ 1 is also an element of τ 2.

  7. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

  8. Set-theoretic topology - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_topology

    Cardinal functions are widely used in topology as a tool for describing various topological properties. [4] [5] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [6] prefer to define the cardinal functions listed below so that they never take on finite cardinal numbers as values; this requires modifying some of the definitions ...

  9. Topological data analysis - Wikipedia

    en.wikipedia.org/wiki/Topological_data_analysis

    In applied mathematics, topological data analysis (TDA) is an approach to the analysis of datasets using techniques from topology.Extraction of information from datasets that are high-dimensional, incomplete and noisy is generally challenging.