Search results
Results from the WOW.Com Content Network
Given a pre-Hilbert space , an orthonormal basis for is an orthonormal set of vectors with the property that every vector in can be written as an infinite linear combination of the vectors in the basis. In this case, the orthonormal basis is sometimes called a Hilbert basis for . Note that an orthonormal basis in this sense is not generally a ...
The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors. What results is a deep ...
Despite the name, an orthonormal basis is not, in general, a basis in the sense of linear algebra (Hamel basis). More precisely, an orthonormal basis is a Hamel basis if and only if the Hilbert space is a finite-dimensional vector space. [90] Completeness of an orthonormal system of vectors of a Hilbert space can be equivalently restated as:
For hypersurfaces in higher-dimensional Euclidean spaces, the principal curvatures may be defined in a directly analogous fashion. The principal curvatures are the eigenvalues of the matrix of the second fundamental form (,) in an orthonormal basis of the tangent space. The principal directions are the corresponding eigenvectors.
With respect to the standard basis e 1, e 2, e 3 of the columns of R are given by (Re 1, Re 2, Re 3). Since the standard basis is orthonormal, and since R preserves angles and length, the columns of R form another orthonormal basis. This orthonormality condition can be expressed in the form
An orthonormal basis is a basis whose vectors are both orthogonal and normalized (they are unit vectors). A conformal linear transformation preserves angles and distance ratios, meaning that transforming orthogonal vectors by the same conformal linear transformation will keep those vectors orthogonal .
The tangent, normal, and binormal unit vectors, often called T, N, and B, or collectively the Frenet–Serret frame (TNB frame or TNB basis), together form an orthonormal basis that spans, and are defined as follows: T is the unit vector tangent to the curve, pointing in the direction of motion.
If an orthonormal basis is to be produced, then the algorithm should test for zero vectors in the output and discard them because no multiple of a zero vector can have a length of 1. The number of vectors output by the algorithm will then be the dimension of the space spanned by the original inputs.