Search results
Results from the WOW.Com Content Network
The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing Information" [1] is one of the most highly cited papers in psychology. [ 2 ] [ 3 ] [ 4 ] It was written by the cognitive psychologist George A. Miller of Harvard University 's Department of Psychology and published in 1956 in Psychological Review .
Description: Graph of the Half-age-plus-seven rule ("never date anyone under half your age plus 7"), which claims to dictate what age disparity between two people is acceptable in dating/romantic/intimate relationships during the late 20th century / early 21st century (called the "Standard creepiness rule" in the xkcd webcomic).
Since we are adding 1 to the tens digit and subtracting one from the units digit, the sum of the digits should remain the same. For example, 9 + 2 = 11 with 1 + 1 = 2. When adding 9 to itself, we would thus expect the sum of the digits to be 9 as follows: 9 + 9 = 18, (1 + 8 = 9) and 9 + 9 + 9 = 27, (2 + 7 = 9).
In other words, in 2 + 7 = 9, 7 is divisible by 7. So 2 and 9 must have the same remainder when divided by 7. The remainder is 2. Therefore, if a number n is a multiple of 7 (i.e.: the remainder of n/7 is 0), then adding (or subtracting) multiples of 7 cannot change that property.
For instance, 3 is the successor of 2 and 7 is the successor of 6. Because of this succession, the value of a + b can also be seen as the bth successor of a, making addition iterated succession. For example, 6 + 2 is 8, because 8 is the successor of 7, which is the successor of 6, making 8 the 2nd successor of 6.
For example, for 2 5 a + 1 there are 3 increases as 1 iterates to 2, 1, 2, 1, and finally to 2 so the result is 3 3 a + 2; for 2 2 a + 1 there is only 1 increase as 1 rises to 2 and falls to 1 so the result is 3a + 1.
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]