enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Haynes Miller - Wikipedia

    en.wikipedia.org/wiki/Haynes_Miller

    Haynes Robert Miller (born January 29, 1948, in Princeton, New Jersey) [1] is an American mathematician specializing in algebraic topology.. Miller completed his undergraduate study at Harvard University and earned his PhD in 1974 under the supervision of John Coleman Moore at Princeton University with thesis Some Algebraic Aspects of the Adams–Novikov Spectral Sequence. [2]

  3. Topological modular forms - Wikipedia

    en.wikipedia.org/wiki/Topological_modular_forms

    In mathematics, topological modular forms (tmf) is the name of a spectrum that describes a generalized cohomology theory.In concrete terms, for any integer n there is a topological space , and these spaces are equipped with certain maps between them, so that for any topological space X, one obtains an abelian group structure on the set ⁡ of homotopy classes of continuous maps from X to .

  4. Sullivan conjecture - Wikipedia

    en.wikipedia.org/wiki/Sullivan_conjecture

    Miller's theorem generalizes to a version of Sullivan's conjecture in which the action on is allowed to be non-trivial. In, [ 3 ] Sullivan conjectured that η is a weak equivalence after a certain p-completion procedure due to A. Bousfield and D. Kan for the group G = Z / 2 {\displaystyle G=Z/2} .

  5. Eilenberg–Zilber theorem - Wikipedia

    en.wikipedia.org/wiki/Eilenberg–Zilber_theorem

    The Eilenberg–Zilber theorem is a key ingredient in establishing the Künneth theorem, which expresses the homology groups () in terms of () and (). In light of the Eilenberg–Zilber theorem, the content of the Künneth theorem consists in analysing how the homology of the tensor product complex relates to the homologies of the factors.

  6. List of conjectures - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures

    Haynes Miller: Sullivan conjecture: classifying spaces: Miller proved the version on mapping BG to a finite complex. 1987: Grigory Margulis: Oppenheim conjecture: diophantine approximation: Margulis proved the conjecture with ergodic theory methods. 1989: Vladimir I. Chernousov: Weil's conjecture on Tamagawa numbers: algebraic groups

  7. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    The Brouwer fixed point theorem was one of the early achievements of algebraic topology, and is the basis of more general fixed point theorems which are important in functional analysis. The case n = 3 first was proved by Piers Bohl in 1904 (published in Journal für die reine und angewandte Mathematik ). [ 14 ]

  8. Barycentric subdivision - Wikipedia

    en.wikipedia.org/wiki/Barycentric_subdivision

    The barycentric subdivision is an operation on simplicial complexes. In algebraic topology it is sometimes useful to replace the original spaces with simplicial complexes via triangulations: This substitution allows one to assign combinatorial invariants such as the Euler characteristic to the spaces.

  9. Homotopy colimit and limit - Wikipedia

    en.wikipedia.org/wiki/Homotopy_colimit_and_limit

    In mathematics, especially in algebraic topology, the homotopy limit and colimit [1] pg 52 are variants of the notions of limit and colimit extended to the homotopy category (). The main idea is this: if we have a diagram