Ad
related to: thermochemical scanning probe for water safety monitoring laboratory
Search results
Results from the WOW.Com Content Network
Thermochemical nanolithography (TCNL) or thermochemical scanning probe lithography (tc-SPL) is a scanning probe microscopy-based nanolithography technique which triggers thermally activated chemical reactions to change the chemical functionality or the phase of surfaces.
Thermal polymer decomposition. Thermal scanning probe lithography (t-SPL) is a form of scanning probe lithography [1] (SPL) whereby material is structured on the nanoscale using scanning probes, primarily through the application of thermal energy.
Scanning probe lithography [1] (SPL) describes a set of nanolithographic methods to pattern material on the nanoscale using scanning probes. It is a direct-write, mask-less approach which bypasses the diffraction limit and can reach resolutions below 10 nm. [ 2 ]
In the product scan, the first quadrupole Q 1 is set to select an ion of a known mass, which is fragmented in q 2. The third quadrupole Q 3 is then set to scan the entire m/z range, giving information on the sizes of the fragments made. The structure of the original ion can be deduced from the ion fragmentation information.
Tip-enhanced Raman spectroscopy (TERS) is a variant of surface-enhanced Raman spectroscopy (SERS) [1] that combines scanning probe microscopy with Raman spectroscopy. High spatial resolution chemical imaging is possible via TERS, [2] with routine demonstrations of nanometer spatial resolution under ambient laboratory conditions, [3] or better [4] at ultralow temperatures and high pressure.
Solid-solid conduction. Probe tip to sample. This is the transfer mechanism which yields the thermal scan. Liquid-liquid conduction. When scanning in non-zero humidity, a liquid meniscus forms between the tip and sample. Conduction can occur through this liquid drop. Gas conduction. Heat can be transferred through the edges of the probe tip to ...
Each probe has a frequency separate from all other probes in the array and independently changes state when touched by water. The state change of the frequency on each probe is monitored by a microprocessor which can perform multiple water level control functions.
The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber.
Ad
related to: thermochemical scanning probe for water safety monitoring laboratory