Search results
Results from the WOW.Com Content Network
Total ionic strength adjustment buffer (TISAB) is a buffer solution which increases the ionic strength of a solution to a relatively high level. This is important for potentiometric measurements, including ion selective electrodes , because they measure the activity of the analyte rather than its concentration.
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
Universal buffers consist of mixtures of acids of diminishing strength (increasing pK a), so that the change in pH is approximately proportional to the amount of alkali added. It consists of a mixture of 0.04 M boric acid , 0.04 M phosphoric acid and 0.04 M acetic acid that has been titrated to the desired pH with 0.2 M sodium hydroxide .
For alkaline buffers, a strong base such as sodium hydroxide may be added. Alternatively, a buffer mixture can be made from a mixture of an acid and its conjugate base. For example, an acetate buffer can be made from a mixture of acetic acid and sodium acetate. Similarly, an alkaline buffer can be made from a mixture of the base and its ...
They can be used to calculate mixed ion activity coefficients and water activities in solutions of high ionic strength for which the Debye–Hückel theory is no longer adequate. They are more rigorous than the equations of specific ion interaction theory (SIT theory), but Pitzer parameters are more difficult to determine experimentally than ...
Mathematical Tables from Handbook of Chemistry and Physics was originally published as a supplement to the handbook up to the 9th edition (1952); afterwards, the 10th edition (1956) was published separately as CRC Standard Mathematical Tables. Earlier editions included sections such as "Antidotes of Poisons", "Rules for Naming Organic Compounds ...
Conductivity measurements are used routinely in many industrial and environmental applications as a fast, inexpensive and reliable way of measuring the ionic content in a solution. [1] For example, the measurement of product conductivity is a typical way to monitor and continuously trend the performance of water purification systems.
where z is the electrical charge on the ion, I is the ionic strength, ε and b are interaction coefficients and m and c are concentrations. The summation extends over the other ions present in solution, which includes the ions produced by the background electrolyte. The first term in these expressions comes from Debye–Hückel theory.