enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal efficiency - Wikipedia

    en.wikipedia.org/wiki/Thermal_efficiency

    So, for a boiler that produces 210 kW (or 700,000 BTU/h) output for each 300 kW (or 1,000,000 BTU/h) heat-equivalent input, its thermal efficiency is 210/300 = 0.70, or 70%. This means that 30% of the energy is lost to the environment. An electric resistance heater has a thermal efficiency close to 100%. [8]

  3. Heating degree day - Wikipedia

    en.wikipedia.org/wiki/Heating_degree_day

    As total energy consumption is in kilowatt hours and heating degree days are [no. days×degrees] we must convert watts per kelvin into kilowatt hours per degree per day by dividing by 1000 (to convert watts to kilowatts), and multiplying by 24 hours in a day (1 kW = 1 kW⋅h/h). Since a 1 °C temperature change and a 1 K change in absolute ...

  4. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    is the temperature gradient (K·m −1) across the sample, A {\displaystyle A} is the cross-sectional area (m 2 ) perpendicular to the path of heat flow through the sample, Δ T {\displaystyle \Delta T} is the temperature difference ( K ) across the sample,

  5. Cooling capacity - Wikipedia

    en.wikipedia.org/wiki/Cooling_capacity

    Another unit common in non-metric regions or sectors is the ton of refrigeration, which describes the amount of water at freezing temperature that can be frozen in 24 hours, equivalent to 3.5 kW or 12,000 BTU/h. [1] [2] [3]

  6. Thermoelectric generator - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_generator

    A thermoelectric generator (TEG), also called a Seebeck generator, is a solid state device that converts heat (driven by temperature differences) directly into electrical energy through a phenomenon called the Seebeck effect [1] (a form of thermoelectric effect).

  7. Thermal comfort - Wikipedia

    en.wikipedia.org/wiki/Thermal_comfort

    Psychological parameters, such as individual expectations, and physiological parameters also affect thermal neutrality. [3] Neutral temperature is the temperature that can lead to thermal neutrality and it may vary greatly between individuals and depending on factors such as activity level, clothing, and humidity.

  8. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    The effect of temperature on thermal conductivity is different for metals and nonmetals. In metals, heat conductivity is primarily due to free electrons. Following the Wiedemann–Franz law, thermal conductivity of metals is approximately proportional to the absolute temperature (in kelvins) times electrical conductivity. In pure metals the ...

  9. Heat flux - Wikipedia

    en.wikipedia.org/wiki/Heat_flux

    Heat flux can be determined using two surface temperature measurements on either side of the material using temperature sensors if k and x of the material are also known. Diagram depicting heat flux through a thermal insulation material with thermal conductivity, k, and thickness, x.