Search results
Results from the WOW.Com Content Network
The problem with this definition is that it does not give the direction of the torque but only the magnitude, and hence it is difficult to use in three-dimensional cases. If the force is perpendicular to the displacement vector r, the moment arm will be equal to the distance to the centre, and torque will be a maximum for the given force. The ...
If an object with weight mg is displaced upwards or downwards a vertical distance y 2 − y 1, the work W done on the object is: = = = where F g is weight (pounds in imperial units, and newtons in SI units), and Δy is the change in height y. Notice that the work done by gravity depends only on the vertical movement of the object.
The g-force acting on a stationary object resting on the Earth's surface is 1 g (upwards) and results from the resisting reaction of the Earth's surface bearing upwards equal to an acceleration of 1 g, and is equal and opposite to gravity. The number 1 is approximate, depending on location.
Acceleration has the dimensions of velocity (L/T) divided by time, i.e. L T −2. The SI unit of acceleration is the metre per second squared (m s −2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where is the moment of couple; F is the magnitude of the force; d is the perpendicular distance (moment) between the two parallel forces
For a simple pendulum, this definition yields a formula for the moment of inertia I in terms of the mass m of the pendulum and its distance r from the pivot point as, =. Thus, the moment of inertia of the pendulum depends on both the mass m of a body and its geometry, or shape, as defined by the distance r to the axis of rotation.
The latter states that the magnitude of the gravitational force from the Earth upon the body is =, where is the mass of the falling body, is the mass of the Earth, is Newton's constant, and is the distance from the center of the Earth to the body's location, which is very nearly the radius of the Earth. Setting this equal to , the body's mass ...