Search results
Results from the WOW.Com Content Network
The characteristic impedance () of an infinite transmission line at a given angular frequency is the ratio of the voltage and current of a pure sinusoidal wave of the same frequency travelling along the line. This relation is also the case for finite transmission lines until the wave reaches the end of the line.
For a typical k of about 0.95, the above formula for the corrected antenna length can be written, for a length in meters as 143 / f , or a length in feet as 468 / f where f is the frequency in megahertz.
The gain in any given direction and the impedance at a given frequency are the same when the antenna is used in transmission or in reception. The electric field of an electromagnetic wave induces a small voltage in each small segment in all electric conductors. The induced voltage depends on the electrical field and the conductor length.
SWR of a vertical HB9XBG Antenna for the 40m-band as a function of frequency. In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide.
The Pocklington integral equation (Henry Pocklington, 1897 [41]) or Hallen integral equation (Erik Hallén, 1938 [46] [47]) give the current on thin cylindrical antennas. [42] [43] In general, accurate calculation of an antenna's electrical properties is mathematically difficult, and antenna simulation computer programs like NEC are usually used.
Stubs are commonly used in antenna impedance matching circuits, frequency selective filters, and resonant circuits for UHF electronic oscillators and RF amplifiers. Stubs can be constructed with any type of transmission line: parallel conductor line (where they are called Lecher lines), coaxial cable, stripline, waveguide, and dielectric waveguide.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
When the antenna is fed at some other point, the formula requires a correction factor discussed below. In a receiving antenna the radiation resistance represents the source resistance of the antenna, and the portion of the received radio power consumed by the radiation resistance represents radio waves re-radiated (scattered) by the antenna. [8 ...