Search results
Results from the WOW.Com Content Network
Chromatographic peak resolution is given by = + where t R is the retention time and w b is the peak width at baseline. The bigger the time-difference and/or the smaller the bandwidths, the better the resolution of the compounds. Here compound 1 elutes before compound 2.
A high value for resolution corresponding to good separation of peaks is similar to the convention used with chromatography separations, [13] although it is important to note that the definitions are not the same. [14] High resolution indicating better peak separation is also used in ion mobility spectrometry. [15]
3) Changing α is the most effective way of increasing resolution. This can be done by choosing a stationary phase that has a greater difference between k 1 ' and k 2 '. It can also be done in L.C. by using pH to invoke secondary equilibria (if applicable). The fundamental resolution equation is derived as follows:
The social media company said it's launching a test that will let Facebook users in Germany, France and the U.S. browse eBay listings directly on its Marketplace online classifieds service but ...
The response factor can be expressed on a molar, volume or mass [1] basis. Where the true amount of sample and standard are equal: = where A is the signal (e.g. peak area) and the subscript i indicates the sample and the subscript st indicates the standard. [2]
Comprehensive two-dimensional gas chromatography, or GC×GC, is a multidimensional gas chromatography technique that was originally described in 1984 by J. Calvin Giddings [1] and first successfully implemented in 1991 by John Phillips and his student Zaiyou Liu. [2] GC×GC utilizes two different columns with two different stationary phases. In ...
The chiral stationary phase, CSP, can interact differently with two enantiomers, by a process known as chiral recognition. Chiral recognition depends on various interactions such as hydrogen bonding, π-π interaction, dipole stacking, inclusion complexation, steric, hydrophobic and electrostatic interaction, charge-transfer interactions, ionic interactions etc, between the analyte and the CSP ...
The spectral resolution of a spectrograph, or, more generally, of a frequency spectrum, is a measure of its ability to resolve features in the electromagnetic spectrum.It is usually denoted by , and is closely related to the resolving power of the spectrograph, defined as =, where is the smallest difference in wavelengths that can be distinguished at a wavelength of .