Search results
Results from the WOW.Com Content Network
The most distinctive xylem cells are the long tracheary elements that transport water. Tracheids and vessel elements are distinguished by their shape; vessel elements are shorter, and are connected together into long tubes that are called vessels. [6] Xylem also contains two other type of cells: parenchyma and fibers. [7] Xylem can be found:
Palisade parenchyma cells can be either cuboidal or elongated. Parenchyma cells in the mesophyll of leaves are specialised parenchyma cells called chlorenchyma cells (parenchyma cells with chloroplasts). Parenchyma cells are also found in other parts of the plant. Storage of starch, protein, fats, oils and water in roots, tubers (e.g. potatoes ...
Xylem fibers or Xylem sclerenchyma; Xylem parenchyma; Cross section of 2-year-old Tilia americana, highlighting xylem ray shape and orientation. Xylem tissue is organised in a tube-like fashion along the main axes of stems and roots. It consists of a combination of parenchyma cells, fibers, vessels, tracheids, and ray cells.
The liver parenchyma is the functional tissue of the organ made up of around 80% of the liver volume as hepatocytes. The other main type of liver cells are non-parenchymal. Non-parenchymal cells constitute 40% of the total number of liver cells but only 6.5% of its volume. [11]
It forms a protective covering on the leaf vein and consists of one or more cell layers, usually parenchyma. Loosely-arranged mesophyll cells lie between the bundle sheath and the leaf surface. The Calvin cycle is confined to the chloroplasts of these bundle sheath cells in C 4 plants. C 2 plants also use a variation of this structure. [1]
Parietal epithelial cell (PEC) Podocyte; Angioblast → Endothelial cell; Mesangial cell. Intraglomerular; Extraglomerular; Juxtaglomerular cell; Macula densa cell; Stromal cell → Interstitial cell → Telocytes; Kidney proximal tubule brush border cell; Kidney distal tubule cell; Connecting tubule cells; α-intercalated cell; β-intercalated ...
Most of these cells transform into xylem and phloem. But certain cells don't transform into xylem and phloem and remain as such. [clarification needed] These cells cut out by the cambium towards the periphery are phloem parenchyma while those towards the pith are xylem parenchyma. Both of these cells together work as secondary medullary rays.
Between the xylem and phloem is a meristem called the vascular cambium. This tissue divides off cells that will become additional xylem and phloem. This growth increases the girth of the plant, rather than its length. As long as the vascular cambium continues to produce new cells, the plant will continue to grow more stout.