enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit function - Wikipedia

    en.wikipedia.org/wiki/Implicit_function

    Then an equation expressing y as an implicit function of the other variables can be written. The defining equation R(x, y) = 0 can also have other pathologies. For example, the equation x = 0 does not imply a function f(x) giving solutions for y at all; it is a vertical line.

  3. Implicit curve - Wikipedia

    en.wikipedia.org/wiki/Implicit_curve

    In general, every implicit curve is defined by an equation of the form (,) = for some function F of two variables. Hence an implicit curve can be considered as the set of zeros of a function of two variables. Implicit means that the equation is not expressed as a solution for either x in terms of y or vice versa.

  4. Implicit function theorem - Wikipedia

    en.wikipedia.org/wiki/Implicit_function_theorem

    The implicit function theorem may still be applied to these two points, by writing x as a function of y, that is, = (); now the graph of the function will be ((),), since where b = 0 we have a = 1, and the conditions to locally express the function in this form are satisfied. The implicit derivative of y with respect to x, and that of x with ...

  5. Folium of Descartes - Wikipedia

    en.wikipedia.org/wiki/Folium_of_Descartes

    The curve was first proposed and studied by René Descartes in 1638. [1] Its claim to fame lies in an incident in the development of calculus.Descartes challenged Pierre de Fermat to find the tangent line to the curve at an arbitrary point since Fermat had recently discovered a method for finding tangent lines.

  6. Backward differentiation formula - Wikipedia

    en.wikipedia.org/wiki/Backward_differentiation...

    The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.

  7. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.

  8. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Explicit examples from the linear multistep family include the Adams–Bashforth methods, and any Runge–Kutta method with a lower diagonal Butcher tableau is explicit. A loose rule of thumb dictates that stiff differential equations require the use of implicit schemes, whereas non-stiff problems can be solved more efficiently with explicit ...

  9. Exact differential equation - Wikipedia

    en.wikipedia.org/wiki/Exact_differential_equation

    Implicit differentiation of the exact second-order equation times will yield an (+) th-order differential equation with new conditions for exactness that can be readily deduced from the form of the equation produced. For example, differentiating the above second-order differential equation once to yield a third-order exact equation gives the ...