Search results
Results from the WOW.Com Content Network
[nb 1] Earth's orbital speed averages 29.78 km/s (19 mi/s; 107,208 km/h; 66,616 mph), which is fast enough to cover the planet's diameter in 7 minutes and the distance to the Moon in 4 hours. [3] The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". [4] [5]
The tangential speed of Earth's rotation at a point on Earth can be approximated by multiplying the speed at the equator by the cosine of the latitude. [42] For example, the Kennedy Space Center is located at latitude 28.59° N, which yields a speed of: cos(28.59°) × 1,674.4 km/h = 1,470.2 km/h.
distance Altitude above the Earth's surface Speed Orbital period Specific orbital energy; Earth's own rotation at surface (for comparison— not an orbit) 6,378 km: 0 km: 465.1 m/s (1,674 km/h or 1,040 mph) 23 h 56 min 4.09 sec: −62.6 MJ/kg: Orbiting at Earth's surface (equator) theoretical 6,378 km: 0 km: 7.9 km/s (28,440 km/h or 17,672 mph)
In most situations it is impractical to achieve escape velocity almost instantly, because of the acceleration implied, and also because if there is an atmosphere, the hypersonic speeds involved (on Earth a speed of 11.2 km/s, or 40,320 km/h) would cause most objects to burn up due to aerodynamic heating or be torn apart by atmospheric drag. For ...
Geocentric circular orbit with an altitude of 35,786 km (22,236 mi). The period of the orbit equals one sidereal day, coinciding with the rotation period of the Earth. The speed is approximately 3 km/s (9,800 ft/s). High Earth orbit (HEO) Geocentric orbits with altitudes at apogee higher than that of the geosynchronous orbit.
The slightly longer stellar period is measured as the Earth rotation angle (ERA), formerly the stellar angle. [4] An increase of 360° in the ERA is a full rotation of the Earth. A sidereal day on Earth is approximately 86164.0905 seconds (23 h 56 min 4.0905 s or 23.9344696 h).
The speed is 7.8 km/s, the net delta-v to reach this orbit is 8.0 km/s. Taking into account the rotation of the Earth, the delta-v is up to 0.46 km/s less (starting at the equator and going east) or more (if going west).
A geostationary equatorial orbit (GEO) is a circular geosynchronous orbit in the plane of the Earth's equator with a radius of approximately 42,164 km (26,199 mi) (measured from the center of the Earth). [21]: 156 A satellite in such an orbit is at an altitude of approximately 35,786 km (22,236 mi) above mean sea level. It maintains the same ...