Search results
Results from the WOW.Com Content Network
The critical heat flux is the peak on the curve between nucleate boiling and transition boiling. The heat transfer from surface to liquid is greater than that in film boiling. Nucleate boiling is common in electric kettles and is responsible for the noise that occurs before boiling occurs. It also occurs in water boilers where water is rapidly ...
The critical heat flux is an important point on the boiling curve and it may be desirable to operate a boiling process near this point. However, one could become cautious of dissipating heat in excess of this amount. Zuber, [6] through a hydrodynamic stability analysis of the problem has developed an expression to approximate this point.
The correlation method does not even use these functional groups, only the molecular weight and the number of atoms are used as molecular descriptors. The prediction of the critical temperature relies on the knowledge of the normal boiling point because the method only predicts the relation of the normal boiling point and the critical ...
The Dittus-Bölter correlation (1930) is a common and particularly simple correlation useful for many applications. This correlation is applicable when forced convection is the only mode of heat transfer; i.e., there is no boiling, condensation, significant radiation, etc. The accuracy of this correlation is anticipated to be ±15%.
Bubbles of carbon dioxide nucleate shortly after the pressure is released from a container of carbonated liquid. Nucleation in boiling can occur in the bulk liquid if the pressure is reduced so that the liquid becomes superheated with respect to the pressure-dependent boiling point. More often, nucleation occurs on the heating surface, at ...
The Churchill–Bernstein equation is a correlation and cannot be derived from principles of fluid dynamics. The equation yields the surface averaged Nusselt number, which is used to determine the average convective heat transfer coefficient .
The Lee–Kesler method [1] allows the estimation of the saturated vapor pressure at a given temperature for all components for which the critical pressure P c, the critical temperature T c, and the acentric factor ω are known.
The simplest form of a group-contribution method is the determination of a component property by summing up the group contributions : [] = +.This simple form assumes that the property (normal boiling point in the example) is strictly linearly dependent on the number of groups, and additionally no interaction between groups and molecules are assumed.