Search results
Results from the WOW.Com Content Network
A root cause analysis identifies the set of multiple causes that together might create a potential accident. Root cause techniques have been successfully borrowed from other disciplines and adapted to meet the needs of the system safety concept, most notably the tree structure from fault tree analysis, which was originally an engineering technique. [7]
With the emergence of highly integrated systems that perform complex and interrelated functions, particularly through the use of electronic technology and software-based techniques [e.g., Integrated Modular Avionics (IMA)], concerns arose that traditionally quantitative functional-level design and analysis techniques previously applied to ...
A fault tree diagram. Fault tree analysis (FTA) is a type of failure analysis in which an undesired state of a system is examined. This analysis method is mainly used in safety engineering and reliability engineering to understand how systems can fail, to identify the best ways to reduce risk and to determine (or get a feeling for) event rates of a safety accident or a particular system level ...
A design failure modes and effects analysis, DFMEA, is a structured qualitative analysis of a system, subsystem, device design to identify potential failure modes and their effects on correct operation. The concept and practice of performing a DFMEA, has been around in some form since the 1960s.
Layers of protection analysis (LOPA) is a technique for evaluating the hazards, risks and layers of protection associated with a system, such as a chemical process plant. . In terms of complexity and rigour LOPA lies between qualitative techniques such as hazard and operability studies (HAZOP) and quantitative techniques such as fault trees and event trees.
The technique uses system analysis methods to determine the safety requirements to protect any individual process component, e.g. a vessel, pipeline, or pump. [1] The safety requirements of individual components are integrated into a complete platform safety system, including liquid containment and emergency support systems such as fire and gas ...
The Zonal Safety Analysis (ZSA) looks at each compartment on the aircraft and looks for hazards that can affect every component in that compartment, such as loss of cooling air or a fluid line bursting. The Common Mode Analysis (CMA) looks at the redundant critical components to find failure modes which can cause all to fail at about the same time.
Software safety (sometimes called software system safety) is an engineering discipline that aims to ensure that software, which is used in safety-related systems (i.e. safety-related software), does not contribute to any hazards such a system might pose. There are numerous standards that govern the way how safety-related software should be ...