enow.com Web Search

  1. Ad

    related to: orifice flow coefficient calculator for air conditioner

Search results

  1. Results from the WOW.Com Content Network
  2. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as

  3. Orifice plate - Wikipedia

    en.wikipedia.org/wiki/Orifice_plate

    For a first approximation, a flow coefficient of 0.62 can be used as this approximates to fully developed flow. An orifice only works well when supplied with a fully developed flow profile. This is achieved by a long upstream length (20 to 40 pipe diameters, depending on Reynolds number) or the use of a flow conditioner. Orifice plates are ...

  4. Flow conditioning - Wikipedia

    en.wikipedia.org/wiki/Flow_conditioning

    The orifice meter flow calculation is based on fluid flow fundamentals (a 1st Law of Thermodynamics derivation utilizing the pipe diameter and vena contracta diameters for the continuity equation). Deviations from theoretical expectation can be assumed under the Coefficient of Discharge.

  5. Blower door - Wikipedia

    en.wikipedia.org/wiki/Blower_door

    Building leakage is described by a power law equation of flow through an orifice. [20] [21] The orifice flow equation is typically expressed as = =Airflow (m 3 /s) = Air leakage coefficient = Pressure differential (Pa)

  6. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  7. Thermal expansion valve - Wikipedia

    en.wikipedia.org/wiki/Thermal_expansion_valve

    A thermal expansion valve is a key element to a heat pump; this is the cycle that makes air conditioning, or air cooling, possible. A basic refrigeration cycle consists of four major elements: a compressor, a condenser, a metering device and an evaporator. As a refrigerant passes through a circuit containing these four elements, air ...

  8. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    For Reynolds number greater than 4000, the flow is turbulent; the resistance to flow follows the Darcy–Weisbach equation: it is proportional to the square of the mean flow velocity. Over a domain of many orders of magnitude of Re ( 4000 < Re < 10 8 ), the friction factor varies less than one order of magnitude ( 0.006 < f D < 0.06 ).

  9. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 [ 1 ] and Gotthilf Heinrich Ludwig Hagen , [ 2 ] and published by Hagen in 1839 [ 1 ] and then by Poiseuille in 1840–41 and 1846 ...

  1. Ad

    related to: orifice flow coefficient calculator for air conditioner