Search results
Results from the WOW.Com Content Network
In mathematics, an anti-diagonal matrix is a square matrix where all the entries are zero except those on the diagonal going from the lower left corner to the upper right corner (↗), known as the anti-diagonal (sometimes Harrison diagonal, secondary diagonal, trailing diagonal, minor diagonal, off diagonal or bad diagonal).
The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If A {\textstyle A} is a real skew-symmetric matrix and λ {\textstyle \lambda } is a real eigenvalue , then λ = 0 {\textstyle \lambda =0} , i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real.
A square diagonal matrix is a symmetric matrix, so this can also be called a symmetric diagonal matrix. The following matrix is square diagonal matrix: [] If the entries are real numbers or complex numbers, then it is a normal matrix as well. In the remainder of this article we will consider only square diagonal matrices, and refer to them ...
A square matrix with entries 0, 1 and −1 such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign. Anti-diagonal matrix: A square matrix with all entries off the anti-diagonal equal to zero. Anti-Hermitian matrix: Synonym for skew-Hermitian matrix. Anti-symmetric matrix
All entries on the main diagonal of a skew-Hermitian matrix have to be pure imaginary; i.e., on the imaginary axis (the number zero is also considered purely imaginary). [ 4 ] If A {\displaystyle A} and B {\displaystyle B} are skew-Hermitian, then a A + b B {\displaystyle aA+bB} is skew-Hermitian for all real scalars a {\displaystyle a ...
The rule of Sarrus is a mnemonic for the expanded form of this determinant: the sum of the products of three diagonal north-west to south-east lines of matrix elements, minus the sum of the products of three diagonal south-west to north-east lines of elements, when the copies of the first two columns of the matrix are written beside it as in ...
If a 2 x 2 real matrix has zero trace, its square is a diagonal matrix. The trace of a 2 × 2 complex matrix is used to classify Möbius transformations. First, the matrix is normalized to make its determinant equal to one. Then, if the square of the trace is 4, the corresponding transformation is parabolic.
For a square matrix, the diagonal (or main diagonal or principal diagonal) is the diagonal line of entries running from the top-left corner to the bottom-right corner. [ 1 ] [ 2 ] [ 3 ] For a matrix A {\displaystyle A} with row index specified by i {\displaystyle i} and column index specified by j {\displaystyle j} , these would be entries A i ...