Search results
Results from the WOW.Com Content Network
Phosphorylation of selected tyrosine sites on receptor substrates is known to activate different pathways leading to increased glucose uptake, lipogenesis, and glycogen and protein synthesis, as well as to the stimulation of cell growth. In addition to the activation of these pathways by tyrosine phosphorylation, several mechanisms of ...
Tyrosine phosphorylation is a fast, reversible reaction, and one of the major regulatory mechanisms in signal transduction. Cell growth, differentiation, migration, and metabolic homeostasis are cellular processes maintained by tyrosine phosphorylation. The function of protein tyrosine kinases and protein-tyrosine phosphatase counterbalances ...
Tyrosine kinases belong to a larger class of enzymes known as protein kinases which also attach phosphates to other amino acids such as serine and threonine. Phosphorylation of proteins by kinases is an important mechanism for communicating signals within a cell (signal transduction) and regulating cellular activity, such as cell division.
Binding sites for a signalling phosphoprotein may be diverse in their chemical structure. [9] Phosphorylation of the hydroxyl group can change the activity of the target protein, or may form part of a signaling cascade via SH2 domain binding. [10] A tyrosine residue also plays an important role in photosynthesis.
The phosphorylation of glucose can be enhanced by the binding of fructose 6-phosphate (F6P), and lessened by the binding fructose 1-phosphate (F1P). Fructose consumed in the diet is converted to F1P in the liver. This negates the action of F6P on glucokinase, [11] which ultimately favors the forward reaction. The capacity of liver cells to ...
A second regulatory phosphorylation site in Src is Tyr-416. This is an autophosphorylation site in the activation loop. It was found that a phosphorylation of Tyr-416 and Tyr-416 can suppressing the transforming ability of the activating Tyr-527→Phe mutation by Tyr-416→Phe mutation leads to maximal stimulation of kinase activity. [11]
Tyrosin-protein kinase Lck (or lymphocyte-specific protein tyrosine kinase) is a 56 kDa protein that is found inside lymphocytes and encoded in the human by the LCK gene. [5] The Lck is a member of Src kinase family (SFK) and is important for the activation of T-cell receptor (TCR) signaling in both naive T cells and effector T cells.
Dimerization of RTKs leads to autophosphorylation of tyrosine in the catalytic core of the dimer, and finally stimulation of the tyrosine kinase activity and cell signaling. [21] It is thus an example of a trans-autophosphorylation reaction, where one receptor subunit of the dimer phosphorylates the other subunit.