enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Global optimization - Wikipedia

    en.wikipedia.org/wiki/Global_optimization

    Global optimization is distinguished from local optimization by its focus on finding the minimum or maximum over the given set, as opposed to finding local minima or maxima. Finding an arbitrary local minimum is relatively straightforward by using classical local optimization methods. Finding the global minimum of a function is far more ...

  3. BRST algorithm - Wikipedia

    en.wikipedia.org/wiki/BRST_algorithm

    Boender-Rinnooy-Stougie-Timmer algorithm (BRST) is an optimization algorithm suitable for finding global optimum of black box functions. In their paper Boender et al. [1] describe their method as a stochastic method involving a combination of sampling, clustering and local search, terminating with a range of confidence intervals on the value of the global minimum.

  4. Deterministic global optimization - Wikipedia

    en.wikipedia.org/wiki/Deterministic_global...

    Deterministic global optimization methods are typically used when locating the global solution is a necessity (i.e. when the only naturally occurring state described by a mathematical model is the global minimum of an optimization problem), when it is extremely difficult to find a feasible solution, or simply when the user desires to locate the ...

  5. Simulated annealing - Wikipedia

    en.wikipedia.org/wiki/Simulated_annealing

    Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. For large numbers of local optima, SA can find the global optimum. [1]

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using control theory . [ 14 ] For example, dynamic search models are used to study labor-market behavior . [ 15 ]

  7. Particle swarm optimization - Wikipedia

    en.wikipedia.org/wiki/Particle_swarm_optimization

    A particle swarm searching for the global minimum of a function. In computational science, particle swarm optimization (PSO) [1] is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality.

  8. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    Convex optimization is a subfield of mathematical optimization that studies the problem of minimizing convex functions over convex sets (or, equivalently, maximizing concave functions over convex sets). Many classes of convex optimization problems admit polynomial-time algorithms, [1] whereas mathematical optimization is in general NP-hard. [2 ...

  9. Bayesian optimization - Wikipedia

    en.wikipedia.org/wiki/Bayesian_optimization

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.