Search results
Results from the WOW.Com Content Network
A compound which is a weak acid in water may become a strong acid in DMSO. Acetic acid is an example of such a substance. An extensive bibliography of p K a {\displaystyle \mathrm {p} K_{{\ce {a}}}} values in solution in DMSO and other solvents can be found at Acidity–Basicity Data in Nonaqueous Solvents .
In computational biology, protein pK a calculations are used to estimate the pK a values of amino acids as they exist within proteins.These calculations complement the pK a values reported for amino acids in their free state, and are used frequently within the fields of molecular modeling, structural bioinformatics, and computational biology.
When the difference between successive pK a values is less than about 3, there is overlap between the pH range of existence of the species in equilibrium. The smaller the difference, the more the overlap. In the case of citric acid, the overlap is extensive and solutions of citric acid are buffered over the whole range of pH 2.5 to 7.5.
A typical procedure would be as follows. A solution of the compound in the medium is acidified with a strong acid to the point where the compound is fully protonated. The solution is then titrated with a strong base until all the protons have been removed. At each point in the titration pH is measured using a glass electrode and a pH meter.
The higher the proton affinity, the stronger the base and the weaker the conjugate acid in the gas phase.The (reportedly) strongest known base is the ortho-diethynylbenzene dianion (E pa = 1843 kJ/mol), [3] followed by the methanide anion (E pa = 1743 kJ/mol) and the hydride ion (E pa = 1675 kJ/mol), [4] making methane the weakest proton acid [5] in the gas phase, followed by dihydrogen.
In this case, raising the pH of the phase mobile above 4–5 = pH (which is the typical pKa range for carboxylic groups) increases their ionization, hence decreases their retention. Conversely, using a mobile phase at a pH lower than 4 [31] will increase their retention, because it will decrease their ionization degree, rendering them less polar.
A weak base is a base that, upon dissolution in water, does not dissociate completely, so that the resulting aqueous solution contains only a small proportion of hydroxide ions and the concerned basic radical, and a large proportion of undissociated molecules of the base.
Acid–base extraction is a subclass of liquid–liquid extractions and involves the separation of chemical species from other acidic or basic compounds. [1] It is typically performed during the work-up step following a chemical synthesis to purify crude compounds [2] and results in the product being largely free of acidic or basic impurities.