Search results
Results from the WOW.Com Content Network
Shamir's secret sharing (SSS) is an efficient secret sharing algorithm for distributing private information (the "secret") among a group. The secret cannot be revealed unless a quorum of the group acts together to pool their knowledge. To achieve this, the secret is mathematically divided into parts (the "shares") from which the secret can be ...
In cryptography, the Feige–Fiat–Shamir identification scheme is a type of parallel zero-knowledge proof developed by Uriel Feige, Amos Fiat, and Adi Shamir in 1988. Like all zero-knowledge proofs, it allows one party, the Prover, to prove to another party, the Verifier, that they possess secret information without revealing to Verifier what that secret information is.
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest , Adi Shamir and Leonard Adleman , who publicly described the algorithm in 1977.
Adi Shamir (Hebrew: עדי שמיר; born July 6, 1952) is an Israeli cryptographer and inventor. He is a co-inventor of the Rivest–Shamir–Adleman (RSA) algorithm (along with Ron Rivest and Len Adleman), a co-inventor of the Feige–Fiat–Shamir identification scheme (along with Uriel Feige and Amos Fiat), one of the inventors of differential cryptanalysis and has made numerous ...
In cryptography, the Fiat–Shamir heuristic is a technique for taking an interactive proof of knowledge and creating a digital signature based on it. This way, some fact (for example, knowledge of a certain secret number) can be publicly proven without revealing underlying information. The technique is due to Amos Fiat and Adi Shamir (1986). [1]
One of these techniques, known as secret sharing made short, [4] combines Rabin's information dispersal algorithm [5] (IDA) with Shamir's secret sharing. Data is first encrypted with a randomly generated key, using a symmetric encryption algorithm. Next this data is split into N pieces using Rabin's IDA.
For the encryption functions used in the Shamir algorithm and the Massey–Omura algorithm described above, the security relies on the difficulty of computing discrete logarithms in a finite field. If an attacker could compute discrete logarithms in GF(p) for the Shamir method or GF(2 n) for the Massey–Omura method then the protocol could be ...
The Fluhrer, Mantin and Shamir (FMS) attack, published in their 2001 paper "Weaknesses in the Key Scheduling Algorithm of RC4", [2] takes advantage of a weakness in the RC4 key scheduling algorithm to reconstruct the key from encrypted messages.