Search results
Results from the WOW.Com Content Network
The maximum lift force that can be generated by an airfoil at a given airspeed depends on the shape of the airfoil, especially the amount of camber (curvature such that the upper surface is more convex than the lower surface, as illustrated at right). Increasing the camber generally increases the maximum lift at a given airspeed.
The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated.
For a thin airfoil of any shape the lift slope is π 2 /90 ≃ 0.11 per degree. At higher angles a maximum point is reached, after which the lift coefficient reduces. The angle at which maximum lift coefficient occurs is the stall angle of the airfoil, which is approximately 10 to 15 degrees on a typical airfoil.
The pressure gradient between these two surfaces contributes to the lift force generated for a given airfoil. The geometry of the airfoil is described with a variety of terms : The leading edge is the point at the front of the airfoil that has maximum curvature (minimum radius).
Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a
The distribution of forces on a wing in flight are both complex and varying. This image shows the forces for two typical airfoils, a symmetrical design on the left, and an asymmetrical design more typical of low-speed designs on the right. This diagram shows only the lift components; the similar drag considerations are not illustrated.
Streamlines around a NACA 0012 airfoil at moderate angle of attack. A foil generates lift primarily because of its shape and angle of attack. When oriented at a suitable angle, the foil deflects the oncoming fluid, resulting in a force on the foil in the direction opposite to the deflection. This force can be resolved into two components: lift ...
Lift and drag are the two components of the total aerodynamic force acting on an aerofoil or aircraft. In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air.