Search results
Results from the WOW.Com Content Network
Lift is always accompanied by a drag force, which is the component of the surface force parallel to the flow direction. Lift is mostly associated with the wings of fixed-wing aircraft , although it is more widely generated by many other streamlined bodies such as propellers , kites , helicopter rotors , racing car wings , maritime sails , wind ...
The section lift coefficient is based on two-dimensional flow over a wing of infinite span and non-varying cross-section so the lift is independent of spanwise effects and is defined in terms of ′, the lift force per unit span of the wing. The definition becomes
Lift (force), in fluid dynamics, a force generated by an object moving through a fluid Lift coefficient , a coefficient that relates the lift generated by a lifting body to other parameters Lift (soaring) , rising air used by soaring birds and glider, hang glider and paraglider pilots for soaring flight
Kutta–Joukowski theorem relates lift to circulation much like the Magnus effect relates side force (called Magnus force) to rotation. [3] However, the circulation here is not induced by rotation of the airfoil. The fluid flow in the presence of the airfoil can be considered to be the superposition of a translational flow and a rotating flow.
Backspin produces an upwards force that prolongs the flight of a moving ball. [4] Likewise side-spin causes swerve to either side as seen during some baseball pitches, e.g. slider. [5] The overall behaviour is similar to that around an aerofoil (see lift force), but with a circulation generated by mechanical rotation rather than shape of the ...
The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...
The lift force L on a wing of area A, traveling at true airspeed v is given by =, where ρ is the density of air, and C L is the lift coefficient. The lift coefficient is a dimensionless number that depends on the wing cross-sectional profile and the angle of attack. [12]
In flight a powered aircraft can be considered as being acted on by four forces: lift, weight, thrust, and drag. [1] Thrust is the force generated by the engine (whether that engine be a jet engine, a propeller, or -- in exotic cases such as the X-15-- a rocket) and acts in a forward direction for the purpose of overcoming drag. [2]