Search results
Results from the WOW.Com Content Network
XaoS is an interactive fractal zoomer program.It allows the user to continuously zoom in or out of a fractal in real-time. XaoS is licensed under GPL.The program is cross-platform, and is available for a variety of operating systems, including Linux, Windows, Mac OS X, BeOS and others.
The main image in the set is Mandel zoom 00 mandelbrot set.jpg. If you have a different image of similar quality, be sure to upload it using the proper free license tag , add it to a relevant article, and nominate it .
The development of the first fractal generating software originated in Benoit Mandelbrot's pursuit of a generalized function for a class of shapes known as Julia sets. In 1979, Mandelbrot discovered that one image of the complex plane could be created by iteration. He and programmers working at IBM generated the first rudimentary fractal ...
Original - Mandelbrot zoom in. Reason Simply an epic animation and a fantastic representation of the multiple layers of complexity and chaos that make up the Mandelbrot set. The user Slaunger suggested that a scaled up version of an earlier animation, made by user Zom-B would probably be worthy of being a featured image.
The quaternion (4-dimensional) Mandelbrot set is simply a solid of revolution of the 2-dimensional Mandelbrot set (in the j-k plane), and is therefore uninteresting to look at. [44] Taking a 3-dimensional cross section at d = 0 ( q = a + b i + c j + d k ) {\displaystyle d=0\ (q=a+bi+cj+dk)} results in a solid of revolution of the 2-dimensional ...
As the Mandelbrot Escape Contours are 'continuous' over the complex plane, if a points escape time has been calculated, then the escape time of that points neighbours should be similar. Interpolation of the neighbouring points should provide a good estimation of where to start in the ϵ n {\displaystyle \epsilon _{n}} series.
A zoom-in to the lower left of the Burning Ship fractal, showing a "burning ship" and self-similarity to the complete fractal A zoom-in to line on the left of the fractal, showing nested repetition (a different colour scheme is used here)
With new performance updates, graphs that include the Mandelbrot set and the Ducks fractal can be made on Desmos. Features such as simulations and tickers also allowed users to create functional interactive games. The usage of these features can be found in Desmos's annual art contest. [21]