enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    While naive Bayes often fails to produce a good estimate for the correct class probabilities, [16] this may not be a requirement for many applications. For example, the naive Bayes classifier will make the correct MAP decision rule classification so long as the correct class is predicted as more probable than any other class. This is true ...

  3. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  4. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  5. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases. Efficient algorithms can perform inference and learning in Bayesian networks.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Bayesian programming - Wikipedia

    en.wikipedia.org/wiki/Bayesian_programming

    It can be drastically simplified by assuming that the probability of appearance of a word knowing the nature of the text (spam or not) is independent of the appearance of the other words. This is the naive Bayes assumption and this makes this spam filter a naive Bayes model. For instance, the programmer can assume that:

  8. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    A loss function is said to be classification-calibrated or Bayes consistent if its optimal is such that / = ⁡ (()) and is thus optimal under the Bayes decision rule. A Bayes consistent loss function allows us to find the Bayes optimal decision function f ϕ ∗ {\displaystyle f_{\phi }^{*}} by directly minimizing the expected risk and without ...

  9. Naive Bayes spam filtering - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_spam_filtering

    Naive Bayes spam filtering is a baseline technique for dealing with spam that can tailor itself to the email needs of individual users and give low false positive spam detection rates that are generally acceptable to users. It is one of the oldest ways of doing spam filtering, with roots in the 1990s.