Search results
Results from the WOW.Com Content Network
While naive Bayes often fails to produce a good estimate for the correct class probabilities, [16] this may not be a requirement for many applications. For example, the naive Bayes classifier will make the correct MAP decision rule classification so long as the correct class is predicted as more probable than any other class. This is true ...
It can be drastically simplified by assuming that the probability of appearance of a word knowing the nature of the text (spam or not) is independent of the appearance of the other words. This is the naive Bayes assumption and this makes this spam filter a naive Bayes model. For instance, the programmer can assume that:
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition
Naive Bayes spam filtering is a baseline technique for dealing with spam that can tailor itself to the email needs of individual users and give low false positive spam detection rates that are generally acceptable to users. It is one of the oldest ways of doing spam filtering, with roots in the 1990s.
For the following definitions, two examples will be used. The first is the problem of character recognition given an array of bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as negative.
For example, a naive way of storing the conditional probabilities of 10 two-valued variables as a table requires storage space for = values. If no variable's local distribution depends on more than three parent variables, the Bayesian network representation stores at most 10 ⋅ 2 3 = 80 {\displaystyle 10\cdot 2^{3}=80} values.
Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ลท: ^ = The samples come from some set X (e.g., the set of all documents, or the set of all images), while the class labels form a finite set Y defined prior to training.
In machine learning, lazy learning is a learning method in which generalization of the training data is, in theory, delayed until a query is made to the system, as opposed to eager learning, where the system tries to generalize the training data before receiving queries.