Search results
Results from the WOW.Com Content Network
The El Farol bar problem is a problem in game theory.Every Thursday night, a fixed population want to go have fun at the El Farol Bar, unless it's too crowded. If less than 60% of the population go to the bar, they'll all have more fun than if they stayed home.
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
A prototypical paper on game theory in economics begins by presenting a game that is an abstraction of a particular economic situation. One or more solution concepts are chosen, and the author demonstrates which strategy sets in the presented game are equilibria of the appropriate type.
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
A simple solution dishes out one gold to the odd or even pirates up to 2G depending whether M is an even or odd power of 2. Another way to see this is to realize that every pirate M will have the vote of all the pirates from M/2 + 1 to M out of self preservation since their survival is secured only with the survival of the pirate M.
The free money game is an example of a "special" game with an even number of equilibria. In it, two players have to both vote "yes" rather than "no" to get a reward and the votes are simultaneous. There are two pure-strategy Nash equilibria, (yes, yes) and (no, no), and no mixed strategy equilibria, because the strategy "yes" weakly dominates "no".
Finding Nash equilibrium in a game takes exponential time in the size of the representation. If the graphical representation of the game is a tree, we can find the equilibrium in polynomial time. In the general case, where the maximal degree of a node is 3 or more, the problem is NP-complete.
The ingredients of a stochastic game are: a finite set of players ; a state space (either a finite set or a measurable space (,)); for each player , an action set (either a finite set or a measurable space (,)); a transition probability from , where = is the action profiles, to , where (,) is the probability that the next state is in given the current state and the current action profile ; and ...