Search results
Results from the WOW.Com Content Network
Le Bel-van't Hoff rule states that for a structure with n asymmetric carbon atoms, there is a maximum of 2 n different stereoisomers possible. As an example, D-glucose is an aldohexose and has the formula C 6 H 12 O 6. Four of its six carbon atoms are stereogenic, which means D-glucose is one of 2 4 =16 possible stereoisomers. [20] [21]
Isomers do not necessarily share similar chemical or physical properties. Two main forms of isomerism are structural (or constitutional) isomerism, in which bonds between the atoms differ; and stereoisomerism (or spatial isomerism), in which the bonds are the same but the relative positions of the atoms differ. Isomeric relationships form a ...
Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.
The molecular configuration of a molecule is the permanent geometry that results from the spatial arrangement of its bonds. [1] The ability of the same set of atoms to form two or more molecules with different configurations is stereoisomerism.
Very often, cis–trans stereoisomers contain double bonds or ring structures. In both cases the rotation of bonds is restricted or prevented. [4] When the substituent groups are oriented in the same direction, the diastereomer is referred to as cis, whereas when the substituents are oriented in opposing directions, the diastereomer is referred to as trans.
In chemistry, a structural isomer (or constitutional isomer in the IUPAC nomenclature [1]) of a compound is another compound whose molecule has the same number of atoms of each element, but with logically distinct [clarification needed] bonds between them. [2] [3] The term metamer was formerly used for the same concept. [4]
Enantiomers of a compound with more than one stereocenter are also diastereomers of the other stereoisomers of that compound that are not their mirror image (that is, excluding the opposing enantiomer). Diastereomers have different physical properties (unlike most aspects of enantiomers) and often different chemical reactivity.
Chiral molecules can differ in their chemical properties, but are identical in their physical properties, which can make distinguishing enantiomers challenging. Absolute configurations for a chiral molecule (in pure form) are most often obtained by X-ray crystallography , although with some important limitations.