enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    A 2×2 real and symmetric matrix representing a stretching and shearing of the plane. The eigenvectors of the matrix (red lines) are the two special directions such that every point on them will just slide on them. The example here, based on the Mona Lisa, provides a simple illustration. Each point on the painting can be represented as a vector ...

  4. Normal eigenvalue - Wikipedia

    en.wikipedia.org/wiki/Normal_eigenvalue

    In mathematics, specifically in spectral theory, an eigenvalue of a closed linear operator is called normal if the space admits a decomposition into a direct sum of a finite-dimensional generalized eigenspace and an invariant subspace where has a bounded inverse.

  5. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.

  6. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  7. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    Each Givens rotation can be done in O(n) steps when the pivot element p is known. However the search for p requires inspection of all N ≈ ⁠ 1 / 2 ⁠ n 2 off-diagonal elements, which means this search dominates the overall complexity and pushes the computational complexity of a sweep in the classical Jacobi algorithm to ().

  8. Normal operator - Wikipedia

    en.wikipedia.org/wiki/Normal_operator

    Eigenvectors of a normal operator corresponding to different eigenvalues are orthogonal, and a normal operator stabilizes the orthogonal complement of each of its eigenspaces. [3] This implies the usual spectral theorem: every normal operator on a finite-dimensional space is diagonalizable by a unitary operator.

  9. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    In the special case of ⁠ ⁠ being a normal matrix, and thus also square, the spectral theorem ensures that it can be unitarily diagonalized using a basis of eigenvectors, and thus decomposed as ⁠ = ⁠ for some unitary matrix ⁠ ⁠ and diagonal matrix ⁠ ⁠ with complex elements ⁠ ⁠ along the diagonal.