Search results
Results from the WOW.Com Content Network
Importance sampling is a variance reduction technique that can be used in the Monte Carlo method.The idea behind importance sampling is that certain values of the input random variables in a simulation have more impact on the parameter being estimated than others.
SampTA (Sampling Theory and Applications) is a biennial interdisciplinary conference for mathematicians, engineers, and applied scientists. The main purpose of SampTA is to exchange recent advances in sampling theory and to explore new trends and directions in the related areas of application.
The best-known importance sampling method, the Metropolis algorithm, can be generalized, and this gives a method that allows analysis of (possibly highly nonlinear) inverse problems with complex a priori information and data with an arbitrary noise distribution.
Grounded theory can be described as a research approach for the collection and analysis of qualitative data for the purpose of generating explanatory theory, in order to understand various social and psychological phenomena. Its focus is to develop a theory from continuous comparative analysis of data collected by theoretical sampling.
The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: [1] Draw a sample from a probability distribution.
A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
Exponential Tilting is used in Monte Carlo Estimation for rare-event simulation, and rejection and importance sampling in particular. In mathematical finance [ 1 ] Exponential Tilting is also known as Esscher tilting (or the Esscher transform ), and often combined with indirect Edgeworth approximation and is used in such contexts as insurance ...