Search results
Results from the WOW.Com Content Network
Galvanic skin resistance (GSR) is an older term that refers to the recorded electrical resistance between two electrodes when a very weak current is steadily passed between them. The electrodes are normally placed about an inch apart, and the resistance recorded varies according to the emotional state of the subject.
Bioelectromagnetics, also known as bioelectromagnetism, is the study of the interaction between electromagnetic fields and biological entities. Areas of study include electromagnetic fields produced by living cells, tissues or organisms, the effects of man-made sources of electromagnetic fields like mobile phones, and the application of electromagnetic radiation toward therapies for the ...
EEG, ECG, EOG and EMG are measured with a differential amplifier which registers the difference between two electrodes attached to the skin. However, the galvanic skin response measures electrical resistance and the Magnetoencephalography (MEG) measures the magnetic field induced by electrical currents (electroencephalogram) of the brain.
Iontophoresis is useful in laboratory experiments, especially in neuropharmacology. [5] Transmitter molecules naturally pass signals between neurons.By microelectrophoretic techniques, including microiontophoresis, neurotransmitters and other chemical agents can be artificially administered very near living and naturally functioning neurons, the activity of which can be simultaneously recorded.
Magnetoencephalography (MEG) is a functional neuroimaging technique for mapping brain activity by recording magnetic fields produced by electrical currents occurring naturally in the brain, using very sensitive magnetometers.
The current clamp technique records the membrane potential by injecting current into a cell through the recording electrode. Unlike in the voltage clamp mode, where the membrane potential is held at a level determined by the experimenter, in "current clamp" mode the membrane potential is free to vary, and the amplifier records whatever voltage ...
The electric current flows mainly at the skin of the conductor, between the outer surface and a level called the skin depth. Skin depth depends on the frequency of the alternating current; as frequency increases, current flow becomes more concentrated near the surface, resulting in less skin depth.
Developmental bioelectricity is a sub-discipline of biology, related to, but distinct from, neurophysiology and bioelectromagnetics.Developmental bioelectricity refers to the endogenous ion fluxes, transmembrane and transepithelial voltage gradients, and electric currents and fields produced and sustained in living cells and tissues.