enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. César Chávez Learning Academies - Wikipedia

    en.wikipedia.org/wiki/César_Chávez_Learning...

    The César E. Chávez Learning Academies, also known as Valley Region High School 5 (VRHS #5), is a public high school of the Los Angeles Unified School District. It is located in the City of San Fernando in the San Fernando Valley region of the Los Angeles metropolitan area, in the US state of California. It is named after César Chávez.

  3. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    Human feedback is commonly collected by prompting humans to rank instances of the agent's behavior. [15] [17] [18] These rankings can then be used to score outputs, for example, using the Elo rating system, which is an algorithm for calculating the relative skill levels of players in a game based only on the outcome of each game. [3]

  4. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  5. Temporal difference learning - Wikipedia

    en.wikipedia.org/wiki/Temporal_difference_learning

    Temporal difference (TD) learning refers to a class of model-free reinforcement learning methods which learn by bootstrapping from the current estimate of the value function. These methods sample from the environment, like Monte Carlo methods , and perform updates based on current estimates, like dynamic programming methods.

  6. Premack's principle - Wikipedia

    en.wikipedia.org/wiki/Premack's_principle

    Just as "reward" was commonly used to alter behavior long before "reinforcement" was studied experimentally, the Premack principle has long been informally understood and used in a wide variety of circumstances. An example is a mother who says, "You have to finish your vegetables (low frequency) before you can eat any ice cream (high frequency)."

  7. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    Various techniques exist to train policies to solve tasks with deep reinforcement learning algorithms, each having their own benefits. At the highest level, there is a distinction between model-based and model-free reinforcement learning, which refers to whether the algorithm attempts to learn a forward model of the environment dynamics.

  8. Apprenticeship learning - Wikipedia

    en.wikipedia.org/wiki/Apprenticeship_learning

    Inverse reinforcement learning (IRL) is the process of deriving a reward function from observed behavior. While ordinary "reinforcement learning" involves using rewards and punishments to learn behavior, in IRL the direction is reversed, and a robot observes a person's behavior to figure out what goal that behavior seems to be trying to achieve. [3]

  9. Q-learning - Wikipedia

    en.wikipedia.org/wiki/Q-learning

    Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations.