Search results
Results from the WOW.Com Content Network
The major enzymatic functions carried out at the replication fork are well conserved from prokaryotes to eukaryotes, but the replication machinery in eukaryotic DNA replication is a much larger complex, coordinating many proteins at the site of replication, forming the replisome. [1]
[1] The replication factor C, or RFC, is a five-subunit [2] protein complex that is required for DNA replication. The subunits of this heteropentamer are named Rfc1, Rfc2, Rfc3, Rfc4, and Rfc5 in Saccharomyces cerevisiae. RFC is used in eukaryotic replication as a clamp loader, similar to the γ Complex in Escherichia coli.
Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. [1] Although it is often studied in the model organism E. coli, other bacteria show many similarities. [2] Replication is bi-directional and originates at a single origin of replication (OriC). [3]
GINS is a protein complex essential to the DNA replication process in the cells of eukaryotes. The complex participates in the initiation and elongation stages of replication. The name GINS is an acronym created from the first letters of the Japanese numbers 5-1-2-3 ( go-ichi-ni-san ) in a reference to the 4 protein subunits of the complex ...
Rolling circle replication (RCR) is a process of unidirectional nucleic acid replication that can rapidly synthesize multiple copies of circular molecules of DNA or RNA, such as plasmids, the genomes of bacteriophages, and the circular RNA genome of viroids. Some eukaryotic viruses also replicate their DNA or RNA via the rolling circle mechanism.
Replication of the low-copy-number ColIb-P9 depends upon Rep, which is produced by expression of the repZ gene. repZ expression requires formation of a pseudoknot in the mRNA. repZ is repressed by a small antisense Inc RNA, which binds to repZ mRNA, forms an Inc RNA-mRNA duplex, and prevents formation of the pseudoknot to inhibit repZ ...
In molecular biology, the ter site, also known as DNA replication terminus binding-site, refers to a protein domain which binds to the DNA replication terminus site.Ter-binding proteins are found in some bacterial species, and include the Tus protein which is part of the common Ter-Tus binding domain.
An autonomously replicating sequence (ARS) contains the origin of replication in the yeast genome. It contains four regions (A, B1, B2, and B3), named in order of their effect on plasmid stability. The A-Domain is highly conserved, any mutation abolishes origin function. Mutations on B1, B2, and B3 will diminish, but not prevent functioning of ...