enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  3. Magnussen model - Wikipedia

    en.wikipedia.org/wiki/Magnussen_model

    Magnussen model is a popular method for computing reaction rates as a function of both mean concentrations and turbulence levels (Magnussen and Hjertager). [1] Originally developed for combustion, it can also be used for liquid reactions by tuning some of its parameters.

  4. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  5. Aquilanti–Mundim deformed Arrhenius model - Wikipedia

    en.wikipedia.org/wiki/Aquilanti–Mundim_Deformed...

    Svante Arrhenius (1889) equation is often used to characterize the effect of temperature on the rates of chemical reactions. [1] The Arrhenius formula gave a simple and powerful law, which in a vast generality of cases describes the dependence on absolute temperature T {\displaystyle T} of the rate constant as following,

  6. Q10 (temperature coefficient) - Wikipedia

    en.wikipedia.org/wiki/Q10_(temperature_coefficient)

    A plot illustrating the dependence on temperature of the rates of chemical reactions and various biological processes, for several different Q 10 temperature coefficients. . The rate ratio at a temperature increase of 10 degrees (marked by points) is equal to the Q 10 coefficie

  7. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    It offers a concrete interpretation of the pre-exponential factor A in the Arrhenius equation; for a unimolecular, single-step process, the rough equivalence A = (k B T/h) exp(1 + ΔS ‡ /R) (or A = (k B T/h) exp(2 + ΔS ‡ /R) for bimolecular gas-phase reactions) holds. For a unimolecular process, a negative value indicates a more ordered ...

  8. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    It is a physical constant that is featured in many fundamental equations in the physical sciences, such as the ideal gas law, the Arrhenius equation, and the Nernst equation. The gas constant is the constant of proportionality that relates the energy scale in physics to the temperature scale and the scale used for amount of substance. Thus, the ...

  9. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    In the equation, k B and h are the Boltzmann and Planck constants, respectively. Although the equations look similar, it is important to note that the Gibbs energy contains an entropic term in addition to the enthalpic one. In the Arrhenius equation, this entropic term is accounted for by the pre-exponential factor A.