Search results
Results from the WOW.Com Content Network
In solar physics and observation, granules are convection cells in the Sun's photosphere. They are caused by currents of plasma in the Sun's convective zone , directly below the photosphere. The grainy appearance of the photosphere is produced by the tops of these convective cells; this pattern is referred to as granulation .
The core contains 34% of the Sun's mass, but only 3% of the Sun's volume, and it generates 99% of the fusion power of the Sun. There are two distinct reactions in which four hydrogen nuclei may eventually result in one helium nucleus: the proton–proton chain reaction – which is responsible for most of the Sun's released energy – and the ...
Diagram showing the Sun's components. The core is where nuclear fusion takes place, creating solar neutrinos. A solar neutrino is a neutrino originating from nuclear fusion in the Sun's core, and is the most common type of neutrino passing through any source observed on Earth at any particular moment.
Thus, the Sun occupies 0.00001% (1 part in 10 7) of the volume of a sphere with a radius the size of Earth's orbit, whereas Earth's volume is roughly 1 millionth (10 −6) that of the Sun. Jupiter, the largest planet, is 5.2 AU from the Sun and has a radius of 71,000 km (0.00047 AU; 44,000 mi), whereas the most distant planet, Neptune, is 30 AU ...
Illustration of different stars' internal structure based on mass. The Sun in the middle has an inner radiating zone and an outer convective zone. The radiative zone is the thickest layer of the Sun, at 0.45 solar radii. From the core out to about 0.7 solar radii, thermal radiation is the primary means of energy transfer. [74]
The heliosphere is the magnetosphere, astrosphere, and outermost atmospheric layer of the Sun.It takes the shape of a vast, tailed bubble-like region of space.In plasma physics terms, it is the cavity formed by the Sun in the surrounding interstellar medium.
The radius of the radiative zone increases monotonically with mass, with stars around 1.2 solar masses being almost entirely radiative. Above 1.2 solar masses, the core region becomes a convection zone and the overlying region is a radiative zone, with the amount of mass within the convective zone increasing with the mass of the star. [7]
In solar physics and observation, supergranulation is a pattern of convection cells in the Sun's photosphere. The individual convection cells are typically referred to as supergranules . The pattern was discovered in the 1950s by A.B. Hart [ 1 ] using Doppler velocity measurements showing horizontal flows on the photosphere (flow speed about ...