enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reaction progress kinetic analysis - Wikipedia

    en.wikipedia.org/wiki/Reaction_progress_kinetic...

    Furthermore, while the presentation of graphical rate laws may at times be considered a visually simplified way to present complex kinetic data, fitting the raw kinetic data for analysis by differential or other rigorous numerical methods is necessary to extract accurate and quantitative rate constants and reaction orders.

  3. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.

  4. Reaction mechanism - Wikipedia

    en.wikipedia.org/wiki/Reaction_mechanism

    The rate law for this reaction is: = [] This form shows that the rate-determining step does not involve CO. Instead, the slow step involves two molecules of NO 2. A possible mechanism for the overall reaction that explains the rate law is: 2 NO 2 → NO 3 + NO (slow) NO 3 + CO → NO 2 + CO 2 (fast)

  5. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    In consecutive reactions, the rate-determining step often determines the kinetics. In consecutive first order reactions, a steady state approximation can simplify the rate law. The activation energy for a reaction is experimentally determined through the Arrhenius equation and the Eyring equation.

  6. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]

  7. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    The kinetic order of any elementary reaction or reaction step is equal to its molecularity, and the rate equation of an elementary reaction can therefore be determined by inspection, from the molecularity. [1] The kinetic order of a complex (multistep) reaction, however, is not necessarily equal to the number of molecules involved.

  8. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  9. Kinetic isotope effect - Wikipedia

    en.wikipedia.org/wiki/Kinetic_isotope_effect

    A primary kinetic isotope effect (PKIE) may be found when a bond to the isotopically labeled atom is being formed or broken. [3] [4]: 427 Depending on the way a KIE is probed (parallel measurement of rates vs. intermolecular competition vs. intramolecular competition), the observation of a PKIE is indicative of breaking/forming a bond to the isotope at the rate-limiting step, or subsequent ...