Search results
Results from the WOW.Com Content Network
The approaches to nanomedicine range from the medical use of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Nanomedicine seeks to deliver a valuable set of research tools and clinically helpful devices in the near future.
The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical ...
The applications of nanotechnology, commonly incorporate industrial, medicinal, and energy uses. These include more durable construction materials, therapeutic drug delivery, and higher density hydrogen fuel cells that are environmentally friendly.
Nanomaterials exhibit different chemical and physical properties or biological effects compared to larger-scale counterparts that can be beneficial for drug delivery systems. Some important advantages of nanoparticles are their high surface-area-to-volume ratio, chemical and geometric tunability, and their ability to interact with biomolecules ...
The cells were exposed to the nanomaterials (0.1–100 μg/ml) for 24, 48 and 72 hours in a medium containing 10% FCS. In D384 cells MTT results revealed a strong cytotoxicity (50%) of SWNTs after 24‑hour exposure already at 0.1 μg/ml, without further changes at higher concentrations or longer incubation times.
Researchers from Rice University and State University of New York – Stony Brook have shown that the addition of low weight % of carbon nanotubes can lead to significant improvements in the mechanical properties of biodegradable polymeric nanocomposites for applications in tissue engineering including bone, [6] [7] [8] cartilage, [9] muscle [10] and nerve tissue.
Wide range of applications (e.g. self-health monitoring, self-healing materials) Nanomaterials: carbon nanotubes: Hypothetical, experiments, diffusion, early uses [83] [84] Higher-specific strength structural components Potential applications of carbon nanotubes, Carbon-fiber-reinforced polymers: Quantum dot
Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, thermo-physical or mechanical properties.