Search results
Results from the WOW.Com Content Network
Titanium(II) oxide (Ti O) is an inorganic chemical compound of titanium and oxygen. It can be prepared from titanium dioxide and titanium metal at 1500 °C. [ 1 ] It is non-stoichiometric in a range TiO 0.7 to TiO 1.3 and this is caused by vacancies of either Ti or O in the defect rock salt structure. [ 1 ]
A thickness of 33.6 nm for Ge 40 Se 60 on the oxidized silicon substrate was found, while a thickness of 34.5 nm of Ge 40 Se 60 on the silicon substrate was found. In addition the thickness of the oxide layer was determined to be 166 nm.
Titanium dioxide, also known as titanium(IV) oxide or titania / t aɪ ˈ t eɪ n i ə /, is the inorganic compound derived from titanium with the chemical formula TiO 2. When used as a pigment, it is called titanium white, Pigment White 6 (PW6), or CI 77891. [4] It is a white solid that is insoluble in water, although mineral forms can appear ...
A common reduced titanium oxide is TiO, also known as titanium monoxide. It can be prepared from titanium dioxide and titanium metal at 1500 °C. [4] Ti 3 O 5, Ti 4 O 7, and Ti 5 O 9 are non-stoichiometric oxides. These compounds are typically formed at high temperatures in the presence of excess oxygen.
The measurement of the heat of adsorption of basic or acidic probe molecules can give a description of acidic and basic sites on metal oxide surfaces. Temperature programmed desorption provides information about acid–base properties by saturating the surface with a probe molecule and measuring the amount that desorbs from the surface as a ...
Titanium may be anodized to vary the thickness of the surface oxide layer, causing optical interference fringes and a variety of bright colors. [124] With this coloration and chemical inertness, titanium is a popular metal for body piercing. [125] Titanium has a minor use in dedicated non-circulating coins and medals.
patination – chemically reacting the metal surface to form a colored oxide or salt. [1] anodizing – electrolytic passivation process used to increase the thickness of the natural oxide layer, producing a porous surface which can accept organic or inorganic dyes easily. In the case of titanium, niobium, and stainless steel, the colour formed ...
The +4 oxidation state dominates titanium chemistry, [1] but compounds in the +3 oxidation state are also numerous. [2] Commonly, titanium adopts an octahedral coordination geometry in its complexes, [3] [4] but tetrahedral TiCl 4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of ...