Search results
Results from the WOW.Com Content Network
The formula describing a current divider is similar in form to that for the voltage divider. However, the ratio describing current division places the impedance of the considered branches in the denominator, unlike voltage division, where the considered impedance is in the numerator. This is because in current dividers, total energy expended is ...
In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.
Source transformations are easy to compute using Ohm's law.If there is a voltage source in series with an impedance, it is possible to find the value of the equivalent current source in parallel with the impedance by dividing the value of the voltage source by the value of the impedance.
These include resistors in series, resistors in parallel and the extension to series and parallel circuits for capacitors, inductors and general impedances. Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here ...
The values of the resistors are selected such that R 1 gives the highest load resistance, R 1 ||R 2 gives the nominal load resistance and either R 1 ||R 2 ||R 3 or R 2 ||R 3 gives the lowest load resistance. A voltmeter is then connected in parallel to the resistors and the measured values of voltage for each load state can be used to calculate ...
The current through the network is equal to the sum of the currents through each component. The two preceding statements are equivalent, except for exchanging the role of voltage and current . A circuit composed solely of components connected in series is known as a series circuit ; likewise, one connected completely in parallel is known as a ...
In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel. It is named after Jacob Millman, who proved the theorem.
Simplified model for powering a load with resistance R L by a source with voltage V S and resistance R S.. The theorem was originally misunderstood (notably by Joule [4]) to imply that a system consisting of an electric motor driven by a battery could not be more than 50% efficient, since the power dissipated as heat in the battery would always be equal to the power delivered to the motor when ...