Search results
Results from the WOW.Com Content Network
Dormand–Prince is the default method in the ode45 solver for MATLAB [4] and GNU Octave [5] and is the default choice for the Simulink's model explorer solver. It is an option in Python's SciPy ODE integration library [6] and in Julia's ODE solvers library. [7]
An example of a nonlinear delay differential equation; applications in number theory, distribution of primes, and control theory [5] [6] [7] Chrystal's equation: 1 + + + = Generalization of Clairaut's equation with a singular solution [8] Clairaut's equation: 1
For example, even the small flap of a butterfly's wings could set the earth's atmosphere on a vastly different trajectory, in which for example a hurricane occurs where it otherwise would have not (see Saddle points). The shape of the Lorenz attractor itself, when plotted in phase space, may also be seen to resemble a butterfly.
While this is certainly true, it may not be the best way to proceed. In particular, Nyström methods work directly with second-order equations. geometric integration methods [18] [19] are especially designed for special classes of ODEs (for example, symplectic integrators for the solution of Hamiltonian equations). They take care that the ...
In fact, the region of absolute stability for the trapezoidal rule is precisely the left-half plane. This means that if the trapezoidal rule is applied to the linear test equation y' = λy, the numerical solution decays to zero if and only if the exact solution does. However, the decay of the numerical solution can be many orders of magnitude ...
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
where λ 1, λ 2, …, λ n are the eigenvalues of A; u 1, u 2, …, u n are the respective eigenvectors of A; and c 1, c 2, …, c n are constants. More generally, if A ( t ) {\displaystyle \mathbf {A} (t)} commutes with its integral ∫ a t A ( s ) d s {\displaystyle \int _{a}^{t}\mathbf {A} (s)ds} then the Magnus expansion reduces to leading ...
The Van der Pol oscillator was originally proposed by the Dutch electrical engineer and physicist Balthasar van der Pol while he was working at Philips. [2] Van der Pol found stable oscillations, [3] which he subsequently called relaxation-oscillations [4] and are now known as a type of limit cycle, in electrical circuits employing vacuum tubes.